Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 606
Filtrar
1.
Sci Rep ; 14(1): 9321, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653789

RESUMO

ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.


Assuntos
Alopecia , Anodontia , Senescência Celular , Fibroblastos , Transtornos do Crescimento , Proteínas dos Microfilamentos , Humanos , Fibroblastos/metabolismo , Senescência Celular/genética , Alopecia/metabolismo , Alopecia/patologia , Alopecia/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/deficiência , Atrofias Ópticas Hereditárias/genética , Atrofias Ópticas Hereditárias/metabolismo , Actinas/metabolismo , Progéria/genética , Progéria/patologia , Progéria/metabolismo
2.
Eur J Med Genet ; 66(4): 104729, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36775012

RESUMO

Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS, OMIM 615722) is a rare autosomal dominant disorder characterized by intellectual disability, optic atrophy, cortical visual impairment, mild facial dysmorphism, hypotonia, hearing problems, attention deficit and a thin corpus callosum. The gene underlying this disorder is NR2F1 located on chromosome 5q15 which encodes for a nuclear receptor protein. Mutations and deletions have been identified in patients. Here we report on a brother and a sister carrying a pathogenic nonsense NR2F1 variant. The patients have a mild phenotype showing optic atrophy, mild intellectual disability, dysmorphic features and thin corpus callosum. This correlates with previously described milder phenotypes in patients with mutations in this domain. The variant was not identified in the parental genome indicating most likely a gonadal mosaicism. Gonadal mosaicism has not yet been reported in Bosch-Boonstra-Schaaf Optic Atrophy Syndrome.


Assuntos
Deficiência Intelectual , Atrofias Ópticas Hereditárias , Atrofia Óptica , Masculino , Humanos , Irmãos , Deficiência Intelectual/genética , Mosaicismo , Atrofias Ópticas Hereditárias/genética , Atrofia Óptica/genética
3.
Medicine (Baltimore) ; 101(40): e30558, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36221391

RESUMO

RATIONALE: Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is a rare neurodevelopmental disorder caused by loss-of-function variants in the Nuclear Receptor Subfamily 2 Group F Member 1 (NR2F1). Here, we report a case of fetal BBSOAS. The fetus is typically featured by bilateral ventricle widening in the late second trimester, meanwhile, a 7.94-Mb deletion fragment on 5q14.3q15 involving the whole NR2F1 gene was confirmed by copy number variation sequencing (CNV-Seq) combined with karyotyping analysis. Our aim is to provide comprehensive prenatal clinical management strategy for fetal BBSOAS. PATIENT CONCERNS: A 29-year-old primipara and her husband were referred to our prenatal diagnosis center due to the widening of bilateral ventricles at 29 + 1 weeks of gestation age. DIAGNOSES: Ultrasound revealed the fetal widening posterior horns of bilateral ventricles at the GA of 27 + 3 weeks, 11 mm on the left and 10 mm on the right. At the following 29 + 1 weeks, ultrasound showed the posterior horn of the left lateral ventricle: 12 mm while the width of the right decreased to 9 mm, and intracranial arachnoid cyst. Furthermore, MRI confirmed that intracranial cyst might originate from an enlarged cisterna venae magnae cerebri, with mild dilation of 13.5 mm on the left ventricle. The fetal karyotyping analysis and CNV-Seq detection confirmed a 7.94-Mb deleted fragment on 5q14.3q15 (89340000_97280000) through the amniocentesis at 29 + 4 weeks of GA. INTERVENTIONS: The fetus was closely monitored and underwent the following assessment by the multidisciplinary team. OUTCOMES: The pregnancy was terminated in the end. LESSONS: It is vital to use molecular and cytogenetical detections combined with a dynamic development history to make a definite diagnosis and evaluate the genetic status for the fetuses with BBSOAS.


Assuntos
Deficiência Intelectual , Atrofias Ópticas Hereditárias , Atrofia Óptica , Adulto , Fator I de Transcrição COUP/genética , Variações do Número de Cópias de DNA , Feminino , Feto , Ventrículos do Coração , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Atrofias Ópticas Hereditárias/genética , Atrofia Óptica/genética , Gravidez , Ultrassonografia Pré-Natal
4.
Cells ; 11(8)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35455940

RESUMO

The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype-phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence-whenever possible-for the existing genotype-phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.


Assuntos
Deficiência Intelectual , Atrofias Ópticas Hereditárias , Animais , Fator I de Transcrição COUP/metabolismo , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Camundongos , Atrofias Ópticas Hereditárias/genética , Atrofias Ópticas Hereditárias/patologia , Síndrome
5.
Hum Mutat ; 43(2): 128-142, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837429

RESUMO

Pathogenic variants of the nuclear receptor subfamily 2 group F member 1 gene (NR2F1) are responsible for Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS), an autosomal dominant disorder characterized by optic atrophy associated with developmental delay and intellectual disability, but with a clinical presentation which appears to be multifaceted. We created the first public locus-specific database dedicated to NR2F1. All variants and clinical cases reported in the literature, as well as new unpublished cases, were integrated into the database using standard nomenclature to describe both molecular and phenotypic anomalies. We subsequently pursued a comprehensive approach based on computed representation and analysis suggesting a refinement of the BBSOAS clinical description with respect to neurological features and the inclusion of additional signs of hypotonia and feeding difficulties. This database is fully accessible for both clinician and molecular biologists and should prove useful in further refining the clinical synopsis of NR2F1 as new data is recorded.


Assuntos
Fator I de Transcrição COUP , Bases de Dados Genéticas , Deficiência Intelectual , Atrofias Ópticas Hereditárias , Atrofia Óptica , Fator I de Transcrição COUP/genética , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Atrofias Ópticas Hereditárias/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética
6.
Am J Med Genet A ; 188(3): 900-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787370

RESUMO

Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is a rare congenital syndrome characterized by a range of phenotypes including optic atrophy and intellectual disability among other features. Pathogenic variants in the NR2F1 (nuclear receptor subfamily 2 group F member 1) gene have been linked to this condition. A recent report has shown that pathogenic variants in the start codon lead to decreased expression of the NR2F1 protein and a relatively mild phenotype, similar to that seen in whole gene deletions, and due to the lack of the dominant negative effect. Here we describe a severe case of BBSOAS with an initiation codon missense variant. The developmental delay, seizures, optic atrophy are in keeping with features observed in this condition, however this is the first report to describe colobomas and septo-optic dysplasia as associated features potentially extending the phenotype linked to BBSOAS. In addition, this is the first description of a severe phenotype linked to a de novo missense variant in the start codon of the NR2F1 gene.


Assuntos
Coloboma , Deficiência Intelectual , Atrofias Ópticas Hereditárias , Atrofia Óptica , Displasia Septo-Óptica , Fator I de Transcrição COUP/genética , Códon de Iniciação , Coloboma/genética , Humanos , Deficiência Intelectual/genética , Atrofias Ópticas Hereditárias/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Displasia Septo-Óptica/diagnóstico , Displasia Septo-Óptica/genética
7.
J AAPOS ; 25(5): 314-316, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425235

RESUMO

We report a case of confirmed Bosch-Boonstra-Schaaf optic atrophy syndrome presenting with suspected optic nerve hypoplasia, corpus callosum agenesis, and low levels of insulin-like growth factor 1. This patient's presentation demonstrates the clinical overlap of Bosch-Boonstra-Schaaf Optic atrophy syndrome with septo-optic dysplasia and the importance of genetic testing for correct diagnosis.


Assuntos
Deficiência Intelectual , Atrofias Ópticas Hereditárias , Atrofia Óptica , Displasia Septo-Óptica , Fator I de Transcrição COUP , Criança , Humanos , Atrofias Ópticas Hereditárias/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Displasia Septo-Óptica/diagnóstico , Displasia Septo-Óptica/genética
8.
Clin Neurol Neurosurg ; 206: 106637, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34022688

RESUMO

Variants of the C19ORF12-gene have been described in patients with spastic paraplegia type 43 and in patients with mitochondrial membrane protein-associated neurodegeneration (MPAN), a subtype of neurodegeneration associated with brain iron accumulation (NBIA). In both subtypes optic atrophy and neuropathy have been frequently described. This case report describes a patient with bilateral optic atrophy and severe distal muscle weakness based on motor neuropathy without involvement of the central nervous system. Exome sequencing revealed a homozygous pathogenic missense variant (c.187G>C;p.Ala63Pro) of the C19ORF12-gene while iron deposits were absent on repeat MR-imaging of the brain, thus showing that peripheral neuropathy and optic neuropathy can be the sole manifestations of the C19ORF12-related disease spectrum whereby iron accumulation in the brain may be absent.


Assuntos
Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Atrofias Ópticas Hereditárias/genética , Doenças do Sistema Nervoso Periférico/genética , Adulto , Humanos , Masculino , Mutação de Sentido Incorreto
9.
Medicine (Baltimore) ; 100(10): e24991, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33725872

RESUMO

RATIONALE: Crouzon syndrome is an autosomal dominant genetic disorder caused by mutations in fibroblast growth factor receptor 2 (FGFR2) and one of the most common types of craniosynostosis. Here we report the detection of FGFR2 mutation and its related clinical findings in 2 patients with Crouzon syndrome from a Chinese family. PATIENT CONCERNS: We report a case of a 28-year-old male patient presented with the chief complaint of gradually blurring of his eyes over the last 6 months before visiting our clinics. History revealed low visual acuity in his right eye since childhood. Physical examination showed that both the patient and his mother have the appearance of craniofacial dysostosis, mandibular prognathism, ocular proptosis, short superior lip, scoliosis, and thoracic deformity. DIAGNOSIS: Auxiliary examinations lead to the diagnosis of Crouzon syndrome with binocular optic atrophy, myelinated retina nerve fibers, and ametropia in both eyes, and amblyopia in the right eye of the male patient. The molecular genetic analysis confirmed the diagnosis by detecting a heterozygous pathogenic mutation c.1026C > G (C342W) in exon 10 of FGFR2 in both the patient and his mother, but not in any of the unaffected family members. INTERVENTIONS AND OUTCOMES: None. LESSONS: Our study confirms the presence of optic nerve atrophy in patients with Crouzon syndrome carrying FGFR2 C342W mutations and indicates that MRI and funduscopy should be performed to examine the optic nerve changes for patients with Crouzon syndrome.


Assuntos
Disostose Craniofacial/complicações , Atrofias Ópticas Hereditárias/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adulto , China , Disostose Craniofacial/genética , Análise Mutacional de DNA , Éxons/genética , Feminino , Angiofluoresceinografia , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Atrofias Ópticas Hereditárias/diagnóstico , Nervo Óptico/diagnóstico por imagem , Linhagem , Tomografia Computadorizada por Raios X
10.
Retina ; 41(10): 2179-2187, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33512896

RESUMO

PURPOSE: To report genetic and clinical findings in a case series of 10 patients from eight unrelated families diagnosed with Senior-Løken syndrome. METHODS: A retrospective study of patients with Senior-Løken syndrome. Data collected included clinical findings electroretinography and ocular imaging. Genetic analysis was based on molecular inversion probes, whole-exome sequencing (WES), and Sanger sequencing. RESULTS: All patients who underwent electrophysiology (8/10) had widespread photoreceptor degeneration. Genetic analysis revealed two mutations in NPHP1, two mutations in NPHP4, and two mutations in IQCB1 (NPHP5). Five of the six mutations identified in the current study were found in a single family each in our cohort. The IQCB1-p.R461* mutation has been identified in 3 families. Patients harboring mutations in IQCB1 were diagnosed with Leber congenital amaurosis, while patients with NPHP4 and NPHP1 mutations showed early and sector retinitis pigmentosa, respectively. Full-field electroretinography was extinct for 6 of 10 patients, moderately decreased for two, and unavailable for another 2 subjects. Renal involvement was evident in 7/10 patients at the time of diagnosis. Kidney function was normal (based on serum creatinine) in patients younger than 10 years. Mutations in IQCB1 were associated with high hypermetropia, whereas mutations in NPHP4 were associated with high myopia. CONCLUSION: Patients presenting with infantile inherited retinal degeneration are not universally screened for renal dysfunction. Modern genetic tests can provide molecular diagnosis at an early age and therefore facilitate early diagnosis of renal disease with recommended periodic screening beyond childhood and family planning.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a Calmodulina/genética , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Doenças Renais Císticas/genética , Amaurose Congênita de Leber/genética , Mutação , Atrofias Ópticas Hereditárias/genética , Proteínas/genética , Adolescente , Criança , Pré-Escolar , Ciliopatias/diagnóstico , Ciliopatias/fisiopatologia , Testes de Percepção de Cores , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Humanos , Lactente , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/fisiopatologia , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/fisiopatologia , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Atrofias Ópticas Hereditárias/diagnóstico , Atrofias Ópticas Hereditárias/fisiopatologia , Linhagem , Fenótipo , Retina/fisiopatologia , Estudos Retrospectivos , Acuidade Visual/fisiologia , Testes de Campo Visual , Sequenciamento do Exoma , Adulto Jovem
11.
Genes (Basel) ; 12(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499292

RESUMO

Inherited optic neuropathies, including Leber Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), are monogenetic diseases with a final common pathway of mitochondrial dysfunction leading to retinal ganglion cell (RGC) death and ultimately loss of vision. They are, therefore, excellent models with which to investigate this ubiquitous disease process-implicated in both common polygenetic ocular diseases (e.g., Glaucoma) and late-onset central nervous system neurodegenerative diseases (e.g., Parkinson disease). In recent years, cellular and animal models of LHON and DOA have matured in parallel with techniques (such as RNA-seq) to determine and analyze the transcriptomes of affected cells. This confluence leaves us at a particularly exciting time with the potential for the identification of novel pathogenic players and therapeutic targets. Here, we present a discussion of the importance of inherited optic neuropathies and how transcriptomic techniques can be exploited in the development of novel mutation-independent, neuroprotective therapies.


Assuntos
Predisposição Genética para Doença , Atrofias Ópticas Hereditárias/genética , Atrofias Ópticas Hereditárias/terapia , Transcriptoma , Alelos , Animais , Gerenciamento Clínico , Perfilação da Expressão Gênica/métodos , Estudos de Associação Genética , Terapia Genética , Genótipo , Humanos , Mutação , Atrofias Ópticas Hereditárias/diagnóstico , Fenótipo
12.
Ann Clin Transl Neurol ; 8(1): 247-251, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285023

RESUMO

CoenzymeQ10 is one of the main cellular antioxidants and an essential lipid involved in numerous cell reactions, such as energy production and apoptosis modulation. A large number of enzymes are involved in CoQ10 biosynthesis. Mutations in the genes encoding for these enzymes cause a CoQ10 deficiency, characterized by neurological and systemic symptoms. Here we describe two young sisters with sensorineural deafness followed by optic atrophy, due to a novel homozygous pathogenic variant in PDSS1. The visual system seems to be mainly involved when the first steps of CoQ10 synthesis are impaired (PDSS1, PDSS2, and COQ2 deficiency).


Assuntos
Alquil e Aril Transferases/genética , Ataxia/genética , Perda Auditiva Neurossensorial/genética , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Atrofias Ópticas Hereditárias/genética , Ubiquinona/deficiência , Adolescente , Criança , Consanguinidade , Feminino , Humanos , Mutação de Sentido Incorreto , Ubiquinona/análogos & derivados , Ubiquinona/biossíntese , Ubiquinona/genética
13.
Am J Kidney Dis ; 77(3): 410-419, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33039432

RESUMO

Primary cilia are specialized sensory organelles that protrude from the apical surface of most cell types. During the past 2 decades, they have been found to play important roles in tissue development and signal transduction, with mutations in ciliary-associated proteins resulting in a group of diseases collectively known as ciliopathies. Many of these mutations manifest as renal ciliopathies, characterized by kidney dysfunction resulting from aberrant cilia or ciliary functions. This group of overlapping and genetically heterogeneous diseases includes polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome as the main focus of this review. Renal ciliopathies are characterized by the presence of kidney cysts that develop due to uncontrolled epithelial cell proliferation, growth, and polarity, downstream of dysregulated ciliary-dependent signaling. Due to cystic-associated kidney injury and systemic inflammation, cases result in kidney failure requiring dialysis and transplantation. Of the handful of pharmacologic treatments available, none are curative. It is important to determine the molecular mechanisms that underlie the involvement of the primary cilium in cyst initiation, expansion, and progression for the development of novel and efficacious treatments. This review updates research progress in defining key genes and molecules central to ciliogenesis and renal ciliopathies.


Assuntos
Síndrome de Bardet-Biedl/genética , Cílios/metabolismo , Ciliopatias/genética , Doenças Renais Policísticas/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/fisiopatologia , Cerebelo/anormalidades , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Chaperoninas/genética , Cílios/fisiologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/fisiopatologia , Ciliopatias/metabolismo , Ciliopatias/fisiopatologia , Proteínas do Citoesqueleto/genética , Encefalocele/genética , Encefalocele/metabolismo , Encefalocele/fisiopatologia , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/fisiopatologia , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/fisiopatologia , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/fisiopatologia , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Atrofias Ópticas Hereditárias/genética , Atrofias Ópticas Hereditárias/metabolismo , Atrofias Ópticas Hereditárias/fisiopatologia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/fisiopatologia , Proteínas/genética , Retina/anormalidades , Retina/metabolismo , Retina/fisiopatologia , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Retinite Pigmentosa/fisiopatologia , Canais de Cátion TRPP/genética
14.
Mol Genet Genomic Med ; 9(1): e1566, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306870

RESUMO

BACKGROUND: Senior-Loken syndrome is a rare genetic disorder that presents with nephronophthisis and retinal degeneration, leading to end-stage renal disease and progressive blindness. The most frequent cause of juvenile nephronophthisis is a mutation in the nephronophthisis type 1 (NPHP1) gene. NPHP1 encodes the protein nephrocystin-1, which functions at the transition zone (TZ) of primary cilia. METHODS: We report a 9-year-old Senior-Loken syndrome boy with NPHP1 deletion, who presents with bilateral vision decrease and cystic renal disease. Renal function deteriorated to require bilateral nephrectomy and renal transplant. We performed immunohistochemistry, H&E staining, and electron microscopy on the renal sample to determine the subcellular distribution of ciliary proteins in the absence of NPHP1. RESULTS: Immunohistochemistry and electron microscopy of the resected kidney showed disorganized cystic structures with loss of cilia in renal tubules. Phosphoinositides have been recently recognized as critical components of the ciliary membrane and immunostaining of kidney sections for phosphoinositide 5-phosphatase, INPP5E, showed loss of staining compared to healthy control. Ophthalmic examination showed decreased electroretinogram consistent with early retinal degeneration. CONCLUSION: The decreased expression of INPP5E specifically in the primary cilium, coupled with disorganized cilia morphology, suggests a novel role of NPHP1 that it is involved in regulating ciliary phosphoinositide composition in the ciliary membrane of renal tubular cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Doenças Renais Císticas/genética , Amaurose Congênita de Leber/genética , Atrofias Ópticas Hereditárias/genética , Monoéster Fosfórico Hidrolases/metabolismo , Criança , Cílios/metabolismo , Ciliopatias/metabolismo , Ciliopatias/patologia , Deleção de Genes , Humanos , Rim/metabolismo , Rim/patologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Masculino , Atrofias Ópticas Hereditárias/metabolismo , Atrofias Ópticas Hereditárias/patologia , Monoéster Fosfórico Hidrolases/genética
15.
Eur J Med Genet ; 63(11): 104039, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805445

RESUMO

Biallelic neuroblastoma amplified sequence (NBAS) gene mutations have recently been identified to cause a reduction in its protein expression and a broad phenotypic spectrum, from isolated short stature, optic nerve atrophy, and Pelger-Huët anomaly (SOPH) syndrome or infantile liver failure syndrome 2 to a combined, multi-systemic disease including skeletal dysplasia and immunological and neurological abnormalities. Herein, we report a 34-year-old patient with a range of phenotypes for NBAS deficiency due to compound heterozygous variants; one is a SOPH-specific variant, p.Arg1914His, and the other is a novel splice site variant, c.6433-2A>G. The patient experienced recurrent acute liver failure until early childhood. Hypogammaglobulinemia, a decrease in natural killer cells, and optic nerve atrophy were evident from infancy to childhood. In adulthood, the patient exhibited novel phenotypic features such as hepatic cirrhosis complicated by portal hypertension and autoimmune hemolytic anemia. The patient also suffered from childhood-onset insulin-requiring diabetes with progressive beta cell dysfunction. The patient had severe short stature and exhibited dysmorphic features compatible with SOPH, intellectual disability, and epilepsy. NBAS protein expression in the patient's fibroblasts was severely low. RNA expression analysis for the c.6433-2A>G variant showed that this variant activated two cryptic splice sites in intron 49 and exon 50, for which the predicted consequences at the protein level were an in-frame deletion/insertion, p.(Ile2199_Asn2202delins16), and a premature termination codon, p.(Ile2199Tyrfs*17), respectively. These findings indicate that NBAS deficiency is a multi-systemic progressive disease. The results of this study extend the spectrum of clinical and genetic findings related to NBAS deficiency.


Assuntos
Nanismo/genética , Cirrose Hepática/genética , Proteínas de Neoplasias/genética , Atrofias Ópticas Hereditárias/genética , Anomalia de Pelger-Huët/genética , Fenótipo , Adulto , Células Cultivadas , Nanismo/patologia , Humanos , Cirrose Hepática/patologia , Masculino , Mutação , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/metabolismo , Atrofias Ópticas Hereditárias/patologia , Anomalia de Pelger-Huët/patologia
17.
Eur J Med Genet ; 63(10): 104019, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712214

RESUMO

Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) has been described as an autosomal-dominant disorder caused by mutations in the NR2F1 gene, whose common characteristics include developmental delay, intellectual disability, optic nerve atrophy, hypotonia, attention deficit disorder, autism spectrum disorder, seizures, hearing defects, spasticity and thinning of the corpus callosum. Missense mutations in NR2F1 have been reported to be the major cause of BBSOAS. A possible genotype-phenotype correlation has been considered with missense mutations affecting the ligand-binding domain of NR2F1 as well as whole-gene deletions of NR2F1 showing a milder phenotype of BBSOAS. Here we report on a patient with a novel frameshift mutation in NR2F1 showing the full spectrum of BBOAS indicating an expanded clinical spectrum and a reconsideration of the observed genotype-phenotype correlation.


Assuntos
Transtorno do Espectro Autista/genética , Fator I de Transcrição COUP/genética , Deficiência Intelectual/genética , Atrofias Ópticas Hereditárias/genética , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Sequência de Bases , Criança , Mutação da Fase de Leitura , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Hipotonia Muscular/genética , Mutação de Sentido Incorreto , Atrofias Ópticas Hereditárias/diagnóstico por imagem , Atrofias Ópticas Hereditárias/fisiopatologia , Fenótipo , Mutação Puntual , Convulsões/genética
18.
EMBO J ; 39(13): e104163, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484994

RESUMO

The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra-Bosch-Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss-of-function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria-like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long-term self-renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area-specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.


Assuntos
Fator I de Transcrição COUP/metabolismo , Neocórtex/embriologia , Células-Tronco Neurais/metabolismo , Lobo Occipital/embriologia , Atrofias Ópticas Hereditárias/embriologia , Lobo Parietal/embriologia , Animais , Fator I de Transcrição COUP/genética , Modelos Animais de Doenças , Humanos , Camundongos , Neocórtex/patologia , Células-Tronco Neurais/patologia , Lobo Occipital/patologia , Atrofias Ópticas Hereditárias/genética , Atrofias Ópticas Hereditárias/patologia , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Lobo Parietal/patologia
19.
Eur J Med Genet ; 63(7): 103941, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32407885

RESUMO

Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is a recently described autosomal dominant syndrome of developmental delay, cortical vision loss with optic nerve atrophy, epilepsy, and autism spectrum disorder. Due to its many overlapping features with congenital disorders of glycosylation (CDG), the differential diagnosis between these disorders may be difficult and relies on molecular genetic testing. We report on a 31-year-old female initially diagnosed with ALG6-CDG based on glycosylation abnormalities on transferrin isoelectrofocusing and targeted genetic testing, and later diagnosed with BBSOAS by whole-exome sequencing (WES). Functional studies on cultured fibroblasts including Western blotting and RT-qPCR, as well as mass spectrometry of glycosylated transferrin and MALDI-TOF glycan analysis in serum, demonstrated normal glycosylation in this patient. In this report, we extend the phenotype of BBSOAS with ataxia and protein-losing enteropathy. This case is illustrative of the utility of whole exome sequencing in the diagnostic odyssey, and the potential pitfalls of relying on focused genetic testing results for diagnosis of conditions with complex overlapping phenotypes.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Glucosiltransferases/genética , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Atrofias Ópticas Hereditárias/genética , Fenótipo , Adulto , Ataxia/genética , Transtorno do Espectro Autista/genética , Epilepsia/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Testes Genéticos , Glicosilação , Humanos , Deficiência Intelectual/diagnóstico , Mutação , Atrofias Ópticas Hereditárias/diagnóstico , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Sequenciamento do Exoma
20.
Am J Med Genet A ; 182(6): 1426-1437, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275123

RESUMO

Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is an autosomal dominant neurodevelopmental disorder caused by loss-of-function variants in NR2F1 and characterized by visual impairment, developmental delay, and intellectual disability. Here we report 18 new cases, provide additional clinical information for 9 previously reported individuals, and review an additional 27 published cases to present a total of 54 patients. Among these are 22 individuals with point mutations or in-frame deletions in the DNA-binding domain (DBD), and 32 individuals with other types of variants including whole-gene deletions, nonsense and frameshift variants, and point mutations outside the DBD. We corroborate previously described clinical characteristics including developmental delay, intellectual disability, autism spectrum disorder diagnoses/features thereof, cognitive/behavioral anomalies, hypotonia, feeding difficulties, abnormal brain MRI findings, and seizures. We also confirm a vision phenotype that includes optic nerve hypoplasia, optic atrophy, and cortical visual impairment. Additionally, we expand the vision phenotype to include alacrima and manifest latent nystagmus (fusional maldevelopment), and we broaden the behavioral phenotypic spectrum to include a love of music, an unusually good long-term memory, sleep difficulties, a high pain tolerance, and touch sensitivity. Furthermore, we provide additional evidence for genotype-phenotype correlations, specifically supporting a more severe phenotype associated with DBD variants.


Assuntos
Fator I de Transcrição COUP/genética , Deficiência Intelectual/genética , Atrofias Ópticas Hereditárias/genética , Convulsões/genética , Códon sem Sentido/genética , Proteínas de Ligação a DNA , Feminino , Mutação da Fase de Leitura/genética , Estudos de Associação Genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/fisiopatologia , Masculino , Mutação/genética , Atrofias Ópticas Hereditárias/complicações , Atrofias Ópticas Hereditárias/fisiopatologia , Mutação Puntual/genética , Convulsões/complicações , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...